ANALISIS SENTIMEN LAYANAN TRANSPORTASI ONLINE PADA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN)

Wahyuni, Aning (2020) ANALISIS SENTIMEN LAYANAN TRANSPORTASI ONLINE PADA TWITTER MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN). Other thesis, Universitas Amikom Purwokerto.

[thumbnail of Cover.pdf]
Preview
Text
Cover.pdf

Download (854kB) | Preview
[thumbnail of DAFTAR ISI.pdf]
Preview
Text
DAFTAR ISI.pdf

Download (523kB) | Preview
[thumbnail of ABSTRAK.pdf]
Preview
Text
ABSTRAK.pdf

Download (509kB) | Preview
[thumbnail of BAB I.pdf] Image
BAB I.pdf
Restricted to Registered users only

Download (644kB)
[thumbnail of BAB II.pdf] Image
BAB II.pdf
Restricted to Registered users only

Download (973kB)
[thumbnail of BAB III.pdf] Image
BAB III.pdf
Restricted to Registered users only

Download (867kB)
[thumbnail of BAB IV.pdf] Image
BAB IV.pdf
Restricted to Registered users only

Download (893kB)
[thumbnail of BAB V.pdf] Image
BAB V.pdf
Restricted to Registered users only

Download (509kB)
[thumbnail of DAFTAR PUSTAKA.pdf] Image
DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (514kB)
[thumbnail of LAMPIRAN.pdf] Image
LAMPIRAN.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

The development of transportation will make it easier for human to do activities. The existence of online transportation make it easy for user to place an order. The more services provided online transportation make people it talk though social media. This research uses twitter as a data base. Tweets on twitter we will get two sentiment analyzes which are negative sentiment and positive sentiment. And the next step we do the classification. For the classification we use K-Nearest Neighbor (K-NN). From this we get 920 data with 640 negative sentiment and 280 positive sentiment. And for the final result classification is 81,52% for accuracy point and 0,878 for Area Under Curve (AUC)
Item Type: Thesis (Other)
Additional Information: Dosen Pembimbing: Prayoga Pribadi, S.E., M.Si.., Dan Primandani Arsi, SST., M.Kom.
Uncontrolled Keywords: Sentiment Analysis, Twitter, K-Nearest Neighbor (K-NN)
Subjects: N Fine Arts > N Visual arts (General) For photography, see TR
T Technology > T Technology (General)
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: UPT Perpustakaan Pusat Universitas Amikom Purwokerto
Date Deposited: 18 Mar 2021 04:49
Last Modified: 18 Mar 2021 04:49
URI: https://eprints.amikompurwokerto.ac.id/id/eprint/699

Actions (login required)

View Item
View Item