Murdijat, Nizar (2025) ANALISIS OPINI PUBLIK TERHADAP TREN LARI DI INDONESIA: STUDI SENTIMEN TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM). Other thesis, Universitas Amikom Purwokerto.
![[thumbnail of File COVER.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/text.png)
File COVER.pdf
Download (779kB)
![[thumbnail of File DAFTAR ISI.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/text.png)
File DAFTAR ISI.pdf
Download (626kB)
![[thumbnail of File ABSTRAK.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/text.png)
File ABSTRAK.pdf
Download (594kB)
![[thumbnail of File BAB I.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File BAB I.pdf
Restricted to Registered users only
Download (614kB)
![[thumbnail of File BAB II.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File BAB II.pdf
Restricted to Registered users only
Download (834kB)
![[thumbnail of File BAB III.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File BAB III.pdf
Restricted to Registered users only
Download (682kB)
![[thumbnail of File BAB IV.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File BAB IV.pdf
Restricted to Registered users only
Download (1MB)
![[thumbnail of File BAB V.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File BAB V.pdf
Restricted to Registered users only
Download (597kB)
![[thumbnail of File DAFTAR PUSTAKA.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/image.png)
File DAFTAR PUSTAKA.pdf
Restricted to Registered users only
Download (575kB)
![[thumbnail of File LAMPIRAN.pdf]](https://eprints.amikompurwokerto.ac.id/style/images/fileicons/text.png)
File LAMPIRAN.pdf
Restricted to Repository staff only
Download (1MB)
Abstract
Penelitian ini menganalisis opini publik terhadap tren lari di Indonesia menggunakan data Twitter dan algoritma Support Vector Machine (SVM). Dengan tujuan mengklasifikasikan sentimen positif dan negatif, penelitian ini mengumpulkan 3.540 data tweet dari Januari hingga Desember 2024 melalui web scraping. Data melalui preprocessing seperti case folding, cleaning, normalization, tokenizing, stopword removal, dan stemming, kemudian pembobotan kata dengan TF-IDF. Hasil menunjukkan mayoritas 2.217 data bersentimen negatif dan 1.323 positif. Model SVM mencapai akurasi 94,35%, presisi 96,35%, recall 88,47%, dan F1-score 92,24%, menunjukkan efektivitas dalam membedakan sentimen. Temuan ini memberikan wawasan bagi komunitas dan brand olahraga untuk strategi berbasis data.
Item Type: | Thesis (Other) |
---|---|
Additional Information: | Dosen Pembimbing: Yuli Purwati, M.Kom., dan Mohammad Imron, M.Kom. |
Uncontrolled Keywords: | Kata Kunci: Analisis Sentimen, Opini Publik, Support Vector Machine (SVM), Tren Lari, Twitter. |
Subjects: | T Technology > T Technology (General) |
Divisions: | Fakultas Ilmu Komputer > Informatika |
Depositing User: | UPT Perpustakaan Pusat Universitas Amikom Purwokerto |
Date Deposited: | 10 Oct 2025 08:28 |
Last Modified: | 10 Oct 2025 08:28 |
URI: | https://eprints.amikompurwokerto.ac.id/id/eprint/2919 |