ANALISIS OPINI PUBLIK TERHADAP TREN LARI DI INDONESIA: STUDI SENTIMEN TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM)

Murdijat, Nizar (2025) ANALISIS OPINI PUBLIK TERHADAP TREN LARI DI INDONESIA: STUDI SENTIMEN TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM). Other thesis, Universitas Amikom Purwokerto.

[thumbnail of File COVER.pdf] Text
File COVER.pdf

Download (779kB)
[thumbnail of File DAFTAR ISI.pdf] Text
File DAFTAR ISI.pdf

Download (626kB)
[thumbnail of File ABSTRAK.pdf] Text
File ABSTRAK.pdf

Download (594kB)
[thumbnail of File BAB I.pdf] Image
File BAB I.pdf
Restricted to Registered users only

Download (614kB)
[thumbnail of File BAB II.pdf] Image
File BAB II.pdf
Restricted to Registered users only

Download (834kB)
[thumbnail of File BAB III.pdf] Image
File BAB III.pdf
Restricted to Registered users only

Download (682kB)
[thumbnail of File BAB IV.pdf] Image
File BAB IV.pdf
Restricted to Registered users only

Download (1MB)
[thumbnail of File BAB V.pdf] Image
File BAB V.pdf
Restricted to Registered users only

Download (597kB)
[thumbnail of File DAFTAR PUSTAKA.pdf] Image
File DAFTAR PUSTAKA.pdf
Restricted to Registered users only

Download (575kB)
[thumbnail of File LAMPIRAN.pdf] Text
File LAMPIRAN.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

Penelitian ini menganalisis opini publik terhadap tren lari di Indonesia menggunakan data Twitter dan algoritma Support Vector Machine (SVM). Dengan tujuan mengklasifikasikan sentimen positif dan negatif, penelitian ini mengumpulkan 3.540 data tweet dari Januari hingga Desember 2024 melalui web scraping. Data melalui preprocessing seperti case folding, cleaning, normalization, tokenizing, stopword removal, dan stemming, kemudian pembobotan kata dengan TF-IDF. Hasil menunjukkan mayoritas 2.217 data bersentimen negatif dan 1.323 positif. Model SVM mencapai akurasi 94,35%, presisi 96,35%, recall 88,47%, dan F1-score 92,24%, menunjukkan efektivitas dalam membedakan sentimen. Temuan ini memberikan wawasan bagi komunitas dan brand olahraga untuk strategi berbasis data.
Item Type: Thesis (Other)
Additional Information: Dosen Pembimbing: Yuli Purwati, M.Kom., dan Mohammad Imron, M.Kom.
Uncontrolled Keywords: Kata Kunci: Analisis Sentimen, Opini Publik, Support Vector Machine (SVM), Tren Lari, Twitter.
Subjects: T Technology > T Technology (General)
Divisions: Fakultas Ilmu Komputer > Informatika
Depositing User: UPT Perpustakaan Pusat Universitas Amikom Purwokerto
Date Deposited: 10 Oct 2025 08:28
Last Modified: 10 Oct 2025 08:28
URI: https://eprints.amikompurwokerto.ac.id/id/eprint/2919

Actions (login required)

View Item
View Item